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WebAssembly seeks to provide an alternative to run-
ning large and untrusted binaries within web browsers
by implementing a portable, performant, and secure
bytecode format for native web computation. However,
WebAssembly is largely unstudied from a security per-
spective. In this work, we build the �rst WebAssembly
virtual machine that runs in native JavaScript, and imple-
ment a novel taint tracking system that allows a user to
run untrusted WebAssembly code while monitoring the
�ow of sensitive data through the application. We also
introduce indirect taint, a label that denotes the implicit
�ow of sensitive information between local variables.
�rough rigorous testing and validation, we show that
our system is correct, secure, and relatively e�cient,
bene�ting from the native performance of WebAssem-
bly while retaining precise security guarantees of more
mature so�ware paradigms.

1 INTRODUCTION
As web applications grow in size and complexity,
they require users to rely on third-party browser
plugins. �ese large programs o�er the capacity
to handle heavy computational loads in exchange
for bulky and potentially insecure non-native im-
plementations. In the past, growing demand for
complex applications like video editing so�ware,
3D games, and scienti�c programs le� both users
and developers li�le choice by way of so�ware
models for heavy-duty so�ware on the client side.
However, an alternative framework known as We-
bAssembly (wasm) was recently released as the
standard of the future for native high-performance
computing in the browser. wasm allows for the
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compilation of C or C++ code into a novel binary in-
struction set, which browsers will be con�gured to
execute in a sandboxed virtual environment within
their runtime engines. Since wasm code is com-
piled, optimized, static, has a linear memory model,
and does not include built-in automatic garbage
collection, it is 20x-40x faster than JavaScript [2].
And because wasm is intended to run natively, its
developers have focused intently on security guar-
antees that were previously intractable in the face
of large, third-party codebases.
�ough wasm is both economical and perfor-

mant, wide adoption by the community requires,
as with all new languages, the development of com-
prehensive security tools atop it so that code can
be checked for safety. One important challenge
in security analysis is to monitor the �ow of sen-
sitive information through a particular program.
In other environments, taint tracking has been de-
ployed as a model for strict bookkeeping of sen-
sitive data [5]. However, there does not yet exist
a platform for taint tracking inside the wasm exe-
cution environment. Native wasm taint tracking
requires the browser to interpret wasm binary code
using client-side (JavaScript) so�ware to track the
�ow of information at runtime. However, (to our
knowledge) there does not exist a JavaScript vir-
tual machine (VM) for wasm. Our contributions
are thus twofold: we develop the �rst JavaScript
wasm VM, and atop this framework we institute
native binary-code-granularity taint tracking. �e
remainder of this paper will proceed as follows:
Section 2 gives an overview of the WebAssembly
technical speci�cation and describes related work
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in taint tracking. Section 3 describes our techni-
cal approach to building both the JavaScript wasm
Virtual Machine and the taint tracking so�ware
linked to it. Section 4 describes the test environ-
ment, including three parts: a parallel compilation
of C into assembly and WebAssembly with veri�-
cation of their equivalence via our virtual machine,
an extensive suite of taint tracking tasks to validate
the correctness of our methods, and a performance
evaluation to demonstrate the relative e�ciency
of our taint tracking implementation. Section 5
concludes and suggests avenues for future work.

2 BACKGROUND AND RELATED
WORK

2.1 WebAssembly Technical Overview
WebAssembly is a low-level bytecode format de-
signed to be compiled from C and C++ and run
natively in web browsers. In the past, users of com-
plex applications would have to install browser
plugins, which are cumbersome and untrusted. We-
bAssembly allows for native execution of high-
performance code within the browser while ad-
hering to strict security guidelines like sandboxed
execution and deterministic behavior. Since its de-
velopment and MVP phase in 2016, WebAssembly
has enjoyed quick adoption by major browsers– an
October 2017 estimate put the share of browsers
supporting wasm at 61.34% [1].
WebAssembly’s runtime engine is described as a

“structured stack machine” [3] in that most wasm
computations involve a local stack of values, func-
tion calls push and pop values from the stack, and
control �ow is organized into blocks, ifs, and loops.
Each binary operation code (opcode) is parsed se-
rially and independently, with the full binary syn-
tax speci�ed as the instantiation of a formal se-
mantics. �is allows wasm to de�ne an abstract
runtime structure that is hardware-agnostic, allow-
ing for full portability across languages, browsers,
operating systems, and machines [6]. However,
in exchange for this �exibility, instructions are of

variable length, which complicates interpreter im-
plementations.
WebAssembly bytecode functions are organized

into blocks of instructions which are decoded and
executed in sequence. An opcode speci�es either
a control instruction, which may change the state
of the program instruction counter (similar to the
%eip value in x86), or a simple instruction, which
performs an operation over the values at the top
of the stack before pushing the results back onto
the stack. wasm opcodes are strongly typed, with
each operation specifying an exact datatype (or
datatypes) over which it operates. Along with the
serial nature of the instruction stream, this guar-
antees that secure veri�cation of a wasm program
can be done in one pass.
WebAssembly’s memory model is simple: a lin-

ear, contiguous block of memory that is sandboxed
away from the stack, local variables, and the run-
time engine’s memory. �is preserves security and
ensures simplicity for access (and taint tracking).
Last, wasm does not have direct access to system

resources, instead relying on external JavaScript
code to pass in data to the virtual environment.
However, WebAssembly is able to export data to
the runtime environment, meaning that there is
a need for a system that monitors wasm code to
ensure the proper handling of secure data.

2.2 Taint Tracking
Most users regularly use a wide variety of so�ware
that (perhaps unbeknownst to the user) has access
to sensitive information, including credit card num-
bers; device hardware data; system, personal, and
advertising preferences; and personal identi�ers
like social security numbers and birth dates. Be-
cause so�ware permissions are both coarse-grained
and highly opaque, mechanisms for monitoring the
�ow of sensitive information during the execution
of a semi-trusted program are a valuable tool in
security analysis.
Taint tracking is a technique that assigns each

data object in a program a taint label that contains
information about its sensitivity. Taint sources are
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those that are inherently sensitive (e.g., personal in-
formation, IMEI numbers), and their labels are ini-
tialized as tainted. As the program executes, taint is
transitively propagated between data objects when
one object’s value is in�uenced by that of a tainted
object. As such, at any point in time the taint track-
ing engine is able to determine precisely which
data are tainted (i.e., either directly or indirectly
store sensitive information) and are thus unsafe to
transmit to untrusted parties. Many systems for
information �ow monitoring in previous work are
coarse-grained and operate at the emulator level
[7], but for our purposes a bytecode-granularity
tracking system is required; [5] describes some of
these previous e�orts. One recent bytecode-level
impelementation is TaintDroid [5], a version of
taint tracking built atop the Android mobile op-
erating system. TaintDroid leverages instruction
code taint propagation in order to shield users from
exposing information to untrusted sources, and to
identify applications that act carelessly or mali-
ciously towards users’ data privacy.

We motivate our work by noting that despite the
many advantages promised by WebAssembly, its
relative youth implies a lack of security tools built
atop it. Since JavaScript is the only language that
can run natively in a browser, it is essential that
there be a JavaScript-based virtual machine that
can execute and instrument the wasm bytecode for
applications like taint tracking. As such, we build
such a machine as a substrate for our taint tracking
and other future security so�ware. We follow this
with a novel implementation of taint tracking that
includes a notion of indirect taint, denoting implicit
�ow of information between variables.

3 TECHNICAL APPROACH
3.1 WebAssembly JavaScript Virtual

Machine
Weorganize our VM implementation into two cores:
sca�olding and execution. Sca�olding refers to the

static building of the virtual environment stipu-
lated by the code’s type de�nitions and other pre-
execution rules. Execution is the serial parsing and
operation of bytecodes, i.e., running the code.
�e largest distributable and executable unit of

code in wasm is known as a module. We represent
a module as a JavaScript process, meaning that
each VM instance contains one module. Within a
module, the WebAssembly abstract runtime is or-
ganized by section, independent components of the
engine with global scope and idiosyncratic respon-
sibilities. �e sections de�ned by the speci�cation
are: import1, export, start, global, memory, data,
table, elements, function, and code.
�e sca�olding routine (build_module() in our

implementation) sets up the local environment for
the current module, creating JavaScript objects for
local memory structures like the runtime stack, in-
stantiating objects for the various sections (e.g.,
reading and storing static data), and making space
for function execution and dynamically-allocated
memory. In more detail, sca�olding proceeds as
follows: check the magic values and version codes
at the beginning of the bytecode to ensure initial
validity. Allocate JavaScript objects to hold tables,
data, globals, memory, tables, functions, exports,
and types (each de�ned in the formal speci�cation).
Starting with the �rst byte a�er the header infor-
mation, read instructions sequentially. For each
section code encountered, instantiate JavaScript
objects as required by the wasm binary. For exam-
ple, the sca�olding may encounter a binary code
specifying a function section that de�nes a par-
ticular function fact whose type is int → int.
Our VM would push a Type object with the correct
information onto the types[] array for the mod-
ule. One important responsibility of the sca�olding
routine is to load the instruction code into local
objects corresponding to each function as de�ned

1For our proof of concept, we omit an implementation of the
import section. Import functionality is analogous to #include
statements in C. �us, we lose no expresiveness by omi�ing
this, since we could just put all our source code for cross-
compilation into one �le.
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1. Assert: due to validation, two values of value type t.int32 are on the top of the stack.
2. Pop the value c2 from the stack.
3. Pop the value c1 from the stack.
4. If int32.add(c1,c2) is de�ned, then:

Let c be a possible result of computing int32.add(c1,c2).
Push the value c to the stack.

5. Else:
Trap.

Fig. 1. Abstract wasm semantics for 32-bit integer addition

if (mod.stack.len() <= 1) {
return -1;

}
c2 = mod.stack.pop();
c1 = mod.stack.pop();
if (c1.type != int32_type || c2.type != int32_type) {

return -1;
}
res = (c1.value + c2.value) % Math.pow(2, 32);
new_var = new Variable(int32_type, res)
mod.stack.push(new_var);

Fig. 2. Concrete JavaScript syntax for 32-bit integer addition

by the wasm binary. �e execution core will then
access the instruction code stored in each function
object in order to execute the requisite instructions
for each function. When the sca�olding routine
is �nished, the JavaScript process underlying the
module will hold local variables that represent the
starting state for the execution of the wasm binary.
�e execution core is responsible for entering

functions, parsing the opcodeswithin the currently-
executing function, and changing the VM’s state in
accordance with the wasm speci�cation. Formally,
the core is tasked with translating the abstract se-
mantics implied by the opcodes it encounters into
concrete JavaScript syntax. As a simple example,
the abstract semantics de�ne the addition of two 32-
bit integers (Figure 1) as reading two values from
the stack, validating their values, adding them, and
then returning the result to the stack. �e concrete
implementation of these abstract instructions in

the JavaScript execution engine is shown in Fig-
ure 2. At runtime, the execution core enters an
event loop in which it reads and interprets instruc-
tions byte by byte, executing the JavaScript code
that correspond to the wasm semantics for each
instruction. In this way, the execution core is the
so�ware bridge between the abstract semantics of
wasm and the concrete state changes it implies in
the virtual machine.
We close this section by noting that the current

implementation does not support �oating point
operations. In total, the sca�olding and runtime
cores, in addition to auxiliary data structures like
stacks and variables comprise about 5000 lines of
JavaScript code.
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3.2 Taint Tracking
We approach taint tracking with an eye towards
maximal security. As such, we de�ne a taint label
per allocable byte in the memory section and for
each variable on the stack. We de�ne our taint
sources as the set of input parameters to the mod-
ule, since there is no other path through which
information can �ow from the outside world to
the virtual machine. Speci�cally, for byte or vari-
able x we represent its taint label as a mapping
from an input parameter y to a value in the set
L = {NONE, INDIRECT, DIRECT}, i.e.,T (x ,y) ∈ L.
For example, the taint label for variable x in a mod-
ule with input parameters src1, src2, and src3 might
look like:

T(x) = {
src1: NONE,
src2: INDIRECT,
src3: DIRECT

}

�e three cases are de�ned as follows:

• T (x ,y) = NONE if x is logically isolated
from any direct or indirect interaction with
the value of y, i.e., x has never been tainted
by y or x is assigned to a constant or vari-
able untainted by y2.
• T (x ,y) = INDIRECT in one of two cases:

– x is assigned a value in a wasm block
(block, loop, if) that includes a
conditional expression cond (expr)
{...} where cond is a conditional op-
code like br_if or br_table, and any
of the variables or bytes in expr are
tainted by y.

– x is assigned a value via x′ = Z [expr ]
where Z is an object on the stack or in
memory, x is a variable on the stack
and x = x′, or else x is a byte a�ected
by the assignment to x′ (for example, x

2�is relationship is represented in our implementation by
omission in the taint label mapping.

is an element in the array x′), and any
variable in expr is tainted by y.

�is means that x is tainted indirectly if y
in�uences the control �ow in such a way
that x gets a value, or if y in�uences an
array lookup that assigns x a value.
• T (x ,y) = DIRECT if x was assigned a value
expr where y taints any variable in the nu-
meric formula expr .

While our taint calculation system is robust, it
is not perfect. In particular, there is one rare case
that we identify as allowing a variable to escape a
would-be tainting operation untainted: if a variable
x is assigned a value in a loop body where the loop
condition is tainted, and the loop never executes
because the condition fails initially, then the vari-
able in the loop body will not be tainted. We allow
for this case because a�empting to control for it
would involve not only tracking the execution of
the program as it runs, but also tracking potentially
in�nite counterfactual executions at each branch
to make sure that in no possible execution could x
be tainted in the branch body. For example (in C
for the sake of simpler reasoning):

y = (...); // suppose y is tainted and
holds value 81

while (y < 42){
x++;

}
.
.
.
return x;

Here, if control �ow never enters the loop condi-
tion, x ’s value depended indirectly on y, though
it is never tainted. However, catching this would
require cloning the execution state to take both
branches; imagining code in which the �rst branch
that was not taken contained many more branches
not taken, we might �nd ourselves in a situation
where we have to manage an exponentially large
number of copies of the module’s state. Symbolic

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:6 • Aron Szanto, Timothy Tamm, and Artidoro Pagnoni

execution systems like KLEE [4] operate in a simi-
lar paradigm, cloning its architectural state upon
reaching a branch in order to “take both paths”.
However, we call a�ention to a case in which a
potentially tainting operation occurs inside an (in-
�nite) loop; a symbolic execution system might be
forced to clone itself in�nitely in order to ensure
that there is no execution path that would taint
any variable. Apart from the theoretical di�culty,
this would also be highly computationally expen-
sive, since such a system would have to spin o�
a separate VM, complete with new local variable
and memory environments, for each conditional
statement it encounters. We argue that despite
this, our taint tracking is superior to many other
implementations; for example, TaintDroid does not
implement any indirect tainting, let alone the han-
dling of this corner case.
Last, our design does not enforce any alignment

or memory access rules in order to ensure that
our VM can run arbitrary wasm modules. Because
of this, if we were not to keep a taint label for
each allocated byte in memory and instead tainted
the beginning of each variable, a malicious user
would be able to avoid tainting a variable by start-
ing to read it at the memory before its taint la-
bel, then discarding the excess bytes at the begin-
ning. �us, there is no fully secure mechanism
for taint tracking in wasm that does not include
a complete assignment of taint labels to each ac-
tive byte in memory. While this design spares no
memory expense, it does avoid one common �aw
in taint tracking: in many systems (including Taint-
Droid), arrays are tainted with the union of their
constituent elements’ taint. Here, since each byte
is individually taint tracked, our system ensures a
no-false-positive condition.

4 TESTING AND EVALUATION
We implement an extensive suite of tests for our
system. Each test takes the following form: com-
pile C code for some function into an x86 binary;
compile the x86 binary to wasm bytecode; run the
wasm code in our system and output the result and

the taint; run the x86 binary and compare the result
with that from the wasm code; compare the taint
output from our system with the (hand-computed)
expected taint. In this way, we run a parallel test
of a source C function in x86 and on our system
to ensure both correctness and taint �ow integrity.
We implement increasingly complex functions to
test our system, and for each we compile themwith
both no and aggressive compiler optimizations to
force our VM to perform each task in a variety of
ways. For example, the factorial function compiled
with no optimization translates to the wasm engine
allocating space in its memory section to compute
the result, but the same function compiled with
optimizations results in the wasm engine perform-
ing the computation using stack variables. We test
several programmatic cases, including a variety
of branching code (loops, conditionals, etc), recur-
sive functions, implicit and explicit conversion of
datatypes (e.g., casting int64 to int32), and array
allocation and random access. Of note are the tests
that compute the relatively complex Euler Totient
function- we provide two implementations. �e
�rst involves a recursive helper function and the
second involves a convoluted iterative implemen-
tation. We demonstrate that our VM runs them
correctly and tracks their taint �awlessly. All of
these tests may be run in sequence via the com-
mand node test.js from the project root3. Note
that in two tests we induce the taint tracking error
described in Section 3 to demonstrate its existence
only in speci�c situations.
As part of our test suite, we built an extensive

debugging toolset, which allows us to see the state
of the stack and memory as each instruction is
executed and how taint is being spread. We hope
that as our system is used and improved, it will
prove helpful to future developers.
We also run several tests to evaluate the perfor-

mance of the system with and without taint track-
ing. First, we run a simple loop for n iterations,

3It may be necessary to run npm install from the project
root to install any missing dependencies
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Fig. 3. Time di�erence for variable assignment routine
with and without taint tracking

where the input n is tainted. �is requires the as-
signment of a tainted variable n times. We report
runtime results for di�erent values of n in Figure 3,
�nding that taint tracking adds a slight overhead as
the number of variable assignments grows into the
tens of thousands. �is result re�ects the simple
computational cost of direct taint tracking.
Next, we compute Euler’s totient function ϕ, sim-

ulating a working environment in which comput-
ing a result is the primary concern, but in which
taint tracking is a necessary byproduct. It should
be noted that this function induces signi�cant in-
direct taint transfer. We show results for calculat-
ing ϕ(n) for several values of n in Figure 4, �nd-
ing that the overhead precipitated by the indirect
taint transfer represents a more signi�cant perfor-
mance cost than in the direct taint tracking case.
We note, however, that our implementation still
guarantees constant-time taint transfer, so no mat-
ter the amount of taint propagated, the asymptotic
e�ciency of any routine will not be a�ected. Here,
though the taint tracked Totient function’s runtime

Fig. 4. Time di�erence for Totient function routine with
and without taint tracking

Fig. 5. Memory overhead from taint tracking

curve is steeper than without taint tracking, it still
belies a linear-time algorithm.
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Last, we test the memory overhead of taint track-
ing. Because the objects we allocate are handled
by the JavaScript engine, we expect an increase
in heap memory usage as we track taint for more
variables. We show the results of a test in which
we allocate an array of size n, then taint each array
element. As shown in Figure 5, memory overhead
is, as expected, linear in n.

5 CONCLUSION
In this paperwemake two contributions: a JavaScript
virtual machine designed to interpret and run We-
bAssembly bytecode, and a taint tracking security
tool atop the VM to monitor the �ow of sensitive
information. We describe our design for the scaf-
folding and execution cores within the wasm en-
gine, and give explicit rules for taint propagation
from function inputs to directly and indirectly im-
pacted intermediate and �nal values. We imple-
ment a comprehensive suite of tests that verify the
correctness of our JavaScript virtual machine for
wasm while validating proper taint tracking proce-
dure. We improve on previous implementations of
taint tracking by adding indirect taint, a label for
a variable whose value is impacted by, though not
assigned to, that of a tainted other variable. Finally,
we evaluate the performance overhead of our taint
tracking implementation, �nding that although the
tool adds both time and space expense, the excess
cost is linearly bounded.
We see several potential avenues of work in the

future. First, the VM as wri�en is almost complete,
omi�ing some functionality like �oating point op-
erations and handling the import section. Future
work may complete it for full compliance with the
wasm speci�cation. Next, an ambitious extension
of our work would be to build a KLEE-like [4] sym-
bolic execution core that not only tracks taint in
the current control �ow, but taints local variables if
they might have been tainted in any possible con-
trol �ow, thus ensuring completeness for indirect
taint. Last, the most natural user-facing application
of our work is the implementation of a browser add-
on that runs taint tracking over untrusted wasm

code, demonstrating safe or unsafe handling of a
user’s private data by a website.
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